Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

نویسندگان

  • Maria R. Dzamukova
  • Ekaterina A. Naumenko
  • Yuri M. Lvov
  • Rawil F. Fakhrullin
چکیده

Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Stability and Efficacy of C16Y Therapeutic Peptide via Molecular Self-Assembly into Tumor-Responsive Nanoformulation.

Peptide therapeutics hold great promise for the treatment of cancer due to low toxicity, high specificity, and ease of synthesis and modification. However, the unfavorable pharmacokinetic parameters strictly limit their therapeutic efficacy and clinical translation. Here, we tailor-designed an amphiphilic chimeric peptide through conjugation of functional 3-diethylaminopropyl isothiocyanate (DE...

متن کامل

Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers

We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem's influence on migration and morphology of Madin Darby canine kidney (MDCK-C7) epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cel...

متن کامل

Models and Technologies Improvement of Stability and Efficacy of C16Y Therapeutic Peptide via Molecular Self-Assembly into Tumor-Responsive Nanoformulation

Peptide therapeutics hold great promise for the treatment of cancer due to low toxicity, high specificity, and ease of synthesis and modification. However, the unfavorable pharmacokinetic parameters strictly limit their therapeutic efficacy and clinical translation. Here, we tailor-designed an amphiphilic chimeric peptide through conjugation of functional 3-diethylaminopropyl isothiocyanate (DE...

متن کامل

Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging.

Enzyme-responsive, hybrid, magnetic silica nanoparticles have been employed for multifunctional applications in selective drug delivery and intracellular tumor imaging. In this study, doxorubicin (Dox)-conjugated, enzyme-cleavable peptide precursors were covalently tethered onto the surface of uniform silica-coated magnetic nanoparticles through click chemistry. This enzyme-responsive nanoparti...

متن کامل

A New Approach to Bacterial Lung Infection – Formamp

A large variety of AMPs have been identified and isolated from plants, animals and humans and their structure is well preserved. These have also been assessed, analysed and modified in order to increase their function and efficiency for drug delivery applications. These peptides act by interacting with the bacterial membranes and by perforating the membrane (see Figure 1). However, only a few c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015